Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
J Cancer Res Ther ; 2020 Jul; 16(3): 539-545
Article | IMSEAR | ID: sea-213855

ABSTRACT

Aim: The purpose of this study was to assess and compare the incidence and severity of sensorineural hearing loss (SNHL) in head-and-neck patients undergoing radiotherapy (RT) and concurrent cisplatin-based chemoradiotherapy (CRT). Materials and Methods: Pure tone audiometry (PTA) was performed at 0.25–12 kHz on 35 RT and 25 CRT patients after 12-month followed up. The hearing loss was evaluated according to the Common Terminology Criteria for Adverse Events (CTCAE) criteria. Results: SNHL increased to 84% in patients who had received CRT, compared with 26% increasing in patients who had treated with RT. There was an increased risk of SNHL at all frequencies for ears received a cochlear mean dose >50 Gy in RT group, compared to those receiving cochlear mean dose >30 Gy in CRT group. SNHL was more severe at higher frequencies in both patient groups. Conclusion: Characteristic of radiation-induced SNHL is different from CRT-induced SNHL, especially in threshold radiation dose and PTA frequency.

2.
J Cancer Res Ther ; 2019 Oct; 15(5): 1018-1023
Article | IMSEAR | ID: sea-213471

ABSTRACT

Introduction: This study aimed to calculate the photon and neutron doses received to the contralateral breast (CB) during breast cancer radiotherapy for various field sizes in the presence of a physical wedge. Materials and Methods: Varian 2100 C/D linear accelerator was simulated using a MCNP4C Monte Carlo code. Then, a phantom of real female chest was simulated and the treatment planning was carried out on tumoral breast (left breast). Finally, the received photon and neutron doses to CB (right breast) were calculated in the presence of a physical wedge for 18 MV photon beam energy. These calculations were performed for different field sizes including 11 cm × 13 cm, 11 cm × 17 cm, and 11 cm × 21 cm. Results: The findings showed that the received doses (both of the photon and neutron) to CB in the presence of a physical wedge for 11 cm × 13 cm, 11 cm × 17 cm, and 11 cm × 21 cm field sizes were 9.87%, 12.91%, and 27.37% of the prescribed dose, respectively. In addition, the results showed that the received photon and neutron doses to CB increased with increment in the field size. Conclusion: From the results of this study, it is concluded that the received photon and neutron doses to CB in the presence of a physical wedge is relatively more, and therefore, they should be reduced to as low as possible. Therefore, using a dynamic wedge instead of a physical wedge or field-in-field technique is suggested

SELECTION OF CITATIONS
SEARCH DETAIL